organic compounds

reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 295 (2) K

244 parameters

 $\Delta \rho_{\text{max}} = 0.39 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

 $0.30 \times 0.20 \times 0.18 \text{ mm}$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6-Chloro- N^2 , N^4 -di-p-tolyl-1,3,5-triazine-2,4-diamine acetone solvate

Fang-Fang Jian,* Yong-Xiang Wei, Li-Hua Huang and Xiao-Yan Ren

New Materials and Function Coordination Chemistry Laboratory, Oingdao University of Science and Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: ffj2003@163169.net

Received 6 November 2007; accepted 17 November 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.009 Å; R factor = 0.077; wR factor = 0.329; data-to-parameter ratio = 15.7.

The title compound, $C_{18}H_{16}ClN_5 \cdot C_2H_6O$, was prepared by the reaction of p-toluidine with 2,4,6-trichloro-1,3,5-triazine at room temperature. The three rings are not coplanar; the dihedral angles between the triazine ring and the phenyl rings are 41.32 and 6.58°, and that between the two phenyl rings is 35.58°. The molecular structure and packing are stabilized by N-H···N, C-H···O and C-H···N hydrogen-bond interactions and $C-H \cdots \pi$ interactions.

Related literature

For related literature, see: Manasek & Hrdlovik (1990); Mathias & Simanek (1994); Zeng, Dong & Shu (2005); Zeng, Dong, Shu et al. (2005).

Experimental

Crystal data

$C_{18}H_{16}ClN_5 \cdot C_2H_6O$
$M_r = 383.88$
Monoclinic, $P2_1/c$
a = 7.8610 (16) Å

b = 22.579 (5) Å c = 12.012 (2) Å $\beta = 104.22 \ (3)^{\circ}$ $= 2066.7 (7) Å^{3}$ Z = 4Mo $K\alpha$ radiation $\mu = 0.20 \text{ mm}^{-1}$

Data collection

Enraf-Nonius CAD-4	1855 reflections with $I >$
diffractometer	$R_{\rm int} = 0.052$
Absorption correction: none	3 standard reflections
4122 measured reflections	every 100 reflections
3833 independent reflections	intensity decay: none

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.077$ $wR(F^2) = 0.329$ S = 1.063833 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C2-C7 and C11-C16 phenyl rings.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots N3^{i}$ $N5 - H5A \cdots N2^{ii}$ $C4 - H4B \cdots O1^{iii}$ $C6 - H6A \cdots N4$ $C12 - H12A \cdots N4$ $C1 - H1C \cdots Cg1^{iv}$ $C17 - H17C \cdots Cg2^{v}$	0.86 0.86 0.93 0.93 0.93 0.93 0.96 0.96	2.16 2.45 2.36 2.59 2.30 3.01 2.92	3.018 (6) 3.300 (6) 3.264 (9) 2.999 (6) 2.912 (7) 3.806 (2) 3.745 (2)	176 171 165 107 123 141 145
8			. ,	

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$, (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$, (iii) $-x - 1, y + \frac{1}{2}, -z - \frac{1}{2}$, (iv) -x + 1, -v, -z; (v) -x + 1, -v, -z + 1.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2005B04).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2472).

References

- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
- Manasek, Z. & Hrdlovik, P. (1990). European Patent EP 0 377 324.
- Mathias, P. J. & Simanek, E. E. (1994). J. Am. Chem. Soc. 116, 4326-4340. Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Zeng, T., Dong, C.-M. & Shu, X.-G. (2005). Acta Cryst. E61, o2334-o2335.
- Zeng, T., Dong, C.-M., Shu, X.-G., Li, J.-S. & Huang, P.-M. (2005). Acta Cryst. E61, o2211-o2212.

supplementary materials

Acta Cryst. (2007). E63, o4937 [doi:10.1107/81600536807060151]

6-Chloro- N^2 , N^4 -di-*p*-tolyl-1,3,5-triazine-2,4-diamine acetone solvate

F.-F. Jian, Y.-X. Wei, L.-H. Huang and X.-Y. Ren

Comment

The amine derivatives of 2,4,6-trichloro[1,3,5]triazine possess valuable properties, as they are widely used as starting materials for many products, including drugs and light stabilizers (Mathias & Simanek, 1994; Manasek & Hrdlovik, 1990). The title compound has been synthesized and we report here its crystal structure.

In the crystal structure (Fig. 1), it contains a solution molecule of acetone, and there is an interaction between the major molecule and the solution molecule. The bond lengths and angles of the major molecule (Table 1) is agreement with those of the similar compound 2,4-dichloro-6-aniline-1,3,5-triazine (Zeng, Dong & Shu, 2005; Zeng, Dong, Shu, Li & Huang, 2005). The atom N1 lies in the plan of phenyl C1—C7(p1). The atom N5 lies in the plan of phenyl C11—C17(p2). The dihedral angles formed by the triazine ring with p1 and p2 are 40.9 (8) and 6.3 (1)°, respectively. The dihedral angles between the plane p1 and p2 is 35.8 (1)°.

It exists two kind of C—H···II interaction [C1···C_g1 = 3.806 (2), C17···C_g2 = 3.745 (2)Å and C1—H1···C_g1 = 141.1 (1), C17—H17C···C_g2 = 145.2 (2)°] (C_g1 = phenyl ring C2–C7, C_g2 = phenyl ring C11—C16). In addition, there exist N—H···N and C—H···O intermolecular interactions (Table 1). All above interactions stabilize the title structure.

Experimental

A mixture of 2,4,6-trichloro-1,3,5-triazine (0.02 mol) and *p*-toluidine (0.04 mol) was stirred with acetone (50 ml) at 293 K for 5 h, affording the title compound (4.8 g, yield 90%). Single crystals suitable for X-ray measurements were obtained by recrystallization from acetone at room temperature.

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H and C—H distances of 0.86 and 0.93–0.96 Å, respectively, and with $U_{iso}(H) = 1.2$ or $1.5U_{eq}$ of the parent atoms.

Figures

Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

6-Chloro- N^2 , N^4 -di-*p*-tolyl-1,3,5-triazine-2,4-diamine acetone solvate

Crystal data

$C_{18}H_{16}ClN_5 \cdot C_2H_6O_1$	$F_{000} = 808$
$M_r = 383.88$	$D_{\rm x} = 1.234 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 221.3 K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.8610 (16) Å	Cell parameters from 25 reflections
b = 22.579 (5) Å	$\theta = 4 - 14^{\circ}$
c = 12.012 (2) Å	$\mu = 0.20 \text{ mm}^{-1}$
$\beta = 104.22 \ (3)^{\circ}$	T = 295 (2) K
$V = 2066.7 (7) \text{ Å}^3$	Block, white
Z = 4	$0.30\times0.20\times0.18~mm$

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.052$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.8^{\circ}$
T = 295(2) K	$h = 0 \rightarrow 9$
ω scans	$k = 0 \rightarrow 26$
Absorption correction: none	$l = -14 \rightarrow 14$
4122 measured reflections	3 standard reflections
3833 independent reflections	every 100 reflections
1855 reflections with $I > 2\sigma(I)$	intensity decay: none

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.077$	H-atom parameters constrained
$wR(F^2) = 0.329$	$w = 1/[\sigma^2(F_o^2) + (0.1873P)^2 + 0.955P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
3833 reflections	$\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$
244 parameters	$\Delta \rho_{min} = -0.48 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C11	0.1703 (2)	0.34124 (6)	0.34531 (14)	0.0828 (6)
N1	-0.0587 (6)	0.17534 (18)	0.0908 (4)	0.0636 (12)
H1A	-0.0266	0.1972	0.0411	0.076*
N2	0.0415 (6)	0.25289 (17)	0.2107 (4)	0.0618 (11)
N3	0.0340 (6)	0.24672 (17)	0.4102 (3)	0.0555 (11)
N4	-0.0697 (5)	0.16526 (16)	0.2826 (3)	0.0539 (10)
N5	-0.0776 (6)	0.16432 (17)	0.4782 (4)	0.0596 (11)
H5A	-0.0589	0.1850	0.5401	0.071*
C1	-0.3658 (9)	-0.0448 (3)	-0.0980 (6)	0.0835 (18)
H1B	-0.4447	-0.0375	-0.1714	0.125*
H1C	-0.4286	-0.0630	-0.0479	0.125*
H1D	-0.2735	-0.0707	-0.1074	0.125*
C2	-0.2877 (7)	0.0130 (2)	-0.0466 (5)	0.0627 (13)
C3	-0.3263 (8)	0.0658 (3)	-0.1043 (5)	0.0755 (17)
H3B	-0.4030	0.0658	-0.1769	0.091*
C4	-0.2545 (8)	0.1189 (2)	-0.0577 (5)	0.0718 (16)
H4B	-0.2851	0.1540	-0.0983	0.086*
C5	-0.1370 (7)	0.1200 (2)	0.0493 (5)	0.0589 (13)
C6	-0.0954 (7)	0.0678 (2)	0.1096 (5)	0.0611 (14)
H6A	-0.0180	0.0679	0.1819	0.073*
C7	-0.1702 (7)	0.0153 (2)	0.0614 (5)	0.0669 (15)
H7A	-0.1410	-0.0197	0.1025	0.080*
C8	-0.0285 (6)	0.1978 (2)	0.1980 (4)	0.0519 (12)
С9	0.0696 (7)	0.2725 (2)	0.3187 (5)	0.0573 (13)
C10	-0.0386 (6)	0.19227 (19)	0.3868 (4)	0.0495 (11)
C11	-0.1436 (6)	0.1068 (2)	0.4875 (4)	0.0546 (12)
C12	-0.1980 (8)	0.0673 (2)	0.3971 (5)	0.0697 (15)
H12A	-0.1983	0.0788	0.3227	0.084*
C13	-0.2515 (8)	0.0108 (2)	0.4176 (5)	0.0751 (16)
H13A	-0.2861	-0.0151	0.3561	0.090*
C14	-0.2555 (7)	-0.0086 (2)	0.5272 (6)	0.0678 (15)
C15	-0.2045 (8)	0.0315 (3)	0.6166 (6)	0.0783 (17)
H15A	-0.2064	0.0201	0.6907	0.094*

supplementary materials

C16	-0.1509 (8)	0.0881 (3)	0.5978 (5)	0.0733 (16)
H16A	-0.1191	0.1142	0.6592	0.088*
C17	-0.3135 (8)	-0.0711 (2)	0.5475 (6)	0.087 (2)
H17A	-0.3052	-0.0767	0.6279	0.130*
H17B	-0.2392	-0.0992	0.5224	0.130*
H17C	-0.4328	-0.0769	0.5050	0.130*
C20	-0.4657 (14)	-0.1911 (5)	-0.1900 (12)	0.190 (6)
H20A	-0.4986	-0.1768	-0.2676	0.285*
H20B	-0.3402	-0.1934	-0.1649	0.285*
H20C	-0.5090	-0.1644	-0.1410	0.285*
O1	-0.6395 (12)	-0.2727 (4)	-0.2586 (10)	0.270 (7)
C19	-0.5396 (11)	-0.2489 (4)	-0.1845 (10)	0.128 (4)
C18	-0.4935 (19)	-0.2761 (7)	-0.0704 (18)	0.282 (11)
H18A	-0.5479	-0.3143	-0.0738	0.423*
H18B	-0.5339	-0.2514	-0.0172	0.423*
H18C	-0.3684	-0.2804	-0.0456	0.423*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1211 (13)	0.0545 (8)	0.0670(11)	-0.0223 (7)	0.0123 (8)	-0.0058 (6)
N1	0.103 (3)	0.049 (2)	0.041 (3)	-0.010 (2)	0.022 (2)	-0.0016 (18)
N2	0.089 (3)	0.046 (2)	0.050 (3)	-0.007 (2)	0.017 (2)	-0.0037 (18)
N3	0.075 (3)	0.045 (2)	0.045 (2)	0.0009 (19)	0.0128 (19)	0.0006 (18)
N4	0.077 (3)	0.044 (2)	0.041 (2)	-0.0004 (18)	0.0162 (19)	-0.0022 (17)
N5	0.085 (3)	0.050 (2)	0.046 (3)	-0.002 (2)	0.020 (2)	-0.0019 (18)
C1	0.103 (5)	0.068 (4)	0.082 (5)	-0.015 (3)	0.027 (4)	-0.022 (3)
C2	0.073 (3)	0.058 (3)	0.061 (3)	-0.005 (3)	0.023 (3)	-0.005 (3)
C3	0.089 (4)	0.070 (4)	0.059 (4)	-0.001 (3)	0.001 (3)	-0.010 (3)
C4	0.098 (4)	0.053 (3)	0.060 (4)	0.006 (3)	0.010 (3)	0.004 (3)
C5	0.074 (3)	0.047 (3)	0.058 (3)	0.001 (2)	0.020 (3)	-0.002 (2)
C6	0.073 (3)	0.052 (3)	0.058 (3)	0.007 (2)	0.015 (3)	-0.003 (2)
C7	0.089 (4)	0.046 (3)	0.070 (4)	0.004 (3)	0.027 (3)	-0.001 (2)
C8	0.069 (3)	0.047 (3)	0.040 (3)	0.003 (2)	0.014 (2)	-0.004 (2)
C9	0.072 (3)	0.041 (2)	0.055 (3)	-0.002 (2)	0.007 (2)	-0.002 (2)
C10	0.065 (3)	0.045 (2)	0.039 (3)	0.005 (2)	0.015 (2)	0.003 (2)
C11	0.059 (3)	0.053 (3)	0.052 (3)	0.002 (2)	0.012 (2)	0.008 (2)
C12	0.087 (4)	0.062 (3)	0.061 (4)	-0.011 (3)	0.021 (3)	-0.003 (3)
C13	0.092 (4)	0.063 (3)	0.074 (4)	-0.013 (3)	0.028 (3)	-0.006 (3)
C14	0.062 (3)	0.054 (3)	0.088 (4)	0.006 (2)	0.019 (3)	0.012 (3)
C15	0.100 (4)	0.064 (4)	0.072 (4)	0.003 (3)	0.022 (3)	0.020 (3)
C16	0.095 (4)	0.065 (3)	0.058 (4)	0.000 (3)	0.014 (3)	0.005 (3)
C17	0.083 (4)	0.061 (4)	0.119 (6)	-0.002 (3)	0.029 (4)	0.023 (3)
C20	0.115 (7)	0.120 (8)	0.317 (18)	-0.006 (6)	0.021 (9)	-0.032 (9)
01	0.188 (7)	0.160 (7)	0.364 (14)	0.037 (6)	-0.122 (8)	-0.155 (8)
C19	0.088 (5)	0.097 (6)	0.171 (9)	0.018 (4)	-0.024 (5)	-0.060 (6)
C18	0.156 (11)	0.27 (2)	0.36 (3)	-0.053 (13)	-0.040 (15)	0.123 (18)

Geometric parameters (Å, °)

Cl1—C9	1.736 (5)	С6—Н6А	0.9300
N1—C8	1.350 (6)	C7—H7A	0.9300
N1—C5	1.428 (6)	C11—C12	1.389 (7)
N1—H1A	0.8600	C11—C16	1.404 (7)
N2—C9	1.337 (6)	C12—C13	1.384 (7)
N2—C8	1.353 (6)	C12—H12A	0.9300
N3—C9	1.333 (6)	C13—C14	1.396 (8)
N3—C10	1.356 (6)	C13—H13A	0.9300
N4—C8	1.356 (6)	C14—C15	1.386 (8)
N4—C10	1.359 (6)	C14—C17	1.521 (7)
N5—C10	1.364 (6)	C15—C16	1.381 (7)
N5—C11	1.414 (6)	C15—H15A	0.9300
N5—H5A	0.8600	C16—H16A	0.9300
C1—C2	1.509 (7)	C17—H17A	0.9600
C1—H1B	0.9600	C17—H17B	0.9600
C1—H1C	0.9600	C17—H17C	0.9600
C1—H1D	0.9600	C20—C19	1.436 (13)
C2—C3	1.375 (8)	C20—H20A	0.9600
C2—C7	1.397 (8)	C20—H20B	0.9600
C3—C4	1.384 (7)	C20—H20C	0.9600
С3—НЗВ	0.9300	O1—C19	1.164 (9)
C4—C5	1.386 (8)	C19—C18	1.463 (18)
C4—H4B	0.9300	C18—H18A	0.9600
C5—C6	1.380 (7)	C18—H18B	0.9600
C6—C7	1.385 (7)	C18—H18C	0.9600
C8—N1—C5	128.5 (4)	N4—C10—N5	120.5 (4)
C8—N1—H1A	115.8	C12-C11-C16	117.9 (5)
C5—N1—H1A	115.8	C12-C11-N5	125.2 (5)
C9—N2—C8	112.3 (4)	C16—C11—N5	116.9 (5)
C9—N3—C10	112.8 (4)	C13—C12—C11	120.1 (5)
C8—N4—C10	115.1 (4)	C13—C12—H12A	120.0
C10—N5—C11	130.4 (4)	C11—C12—H12A	120.0
C10—N5—H5A	114.8	C12-C13-C14	122.4 (5)
C11—N5—H5A	114.8	C12-C13-H13A	118.8
C2—C1—H1B	109.5	C14—C13—H13A	118.8
C2—C1—H1C	109.5	C15-C14-C13	117.2 (5)
H1B—C1—H1C	109.5	C15—C14—C17	121.5 (6)
C2—C1—H1D	109.5	C13—C14—C17	121.3 (6)
H1B—C1—H1D	109.5	C16-C15-C14	121.2 (6)
H1C—C1—H1D	109.5	C16—C15—H15A	119.4
C3—C2—C7	116.7 (5)	C14—C15—H15A	119.4
C3—C2—C1	121.8 (5)	C15—C16—C11	121.2 (6)
C7—C2—C1	121.5 (5)	C15—C16—H16A	119.4
C2—C3—C4	122.0 (5)	C11—C16—H16A	119.4
С2—С3—Н3В	119.0	C14—C17—H17A	109.5
С4—С3—Н3В	119.0	C14—C17—H17B	109.5

supplementary materials

C3—C4—C5	120.2 (5)	H17A—C17—H17B	109.5
C3—C4—H4B	119.9	С14—С17—Н17С	109.5
C5—C4—H4B	119.9	H17A—C17—H17C	109.5
C6—C5—C4	119.3 (5)	H17B—C17—H17C	109.5
C6—C5—N1	122.5 (5)	C19—C20—H20A	109.5
C4—C5—N1	118.1 (4)	С19—С20—Н20В	109.5
C5—C6—C7	119.3 (5)	H20A—C20—H20B	109.5
С5—С6—Н6А	120.3	С19—С20—Н20С	109.5
С7—С6—Н6А	120.3	H20A—C20—H20C	109.5
C6—C7—C2	122.4 (5)	H20B-C20-H20C	109.5
С6—С7—Н7А	118.8	O1—C19—C20	126.1 (13)
С2—С7—Н7А	118.8	O1—C19—C18	119.2 (13)
N1—C8—N2	115.1 (4)	C20-C19-C18	114.5 (10)
N1—C8—N4	119.5 (4)	C19—C18—H18A	109.5
N2	125.4 (4)	C19—C18—H18B	109.5
N3—C9—N2	129.6 (4)	H18A—C18—H18B	109.5
N3—C9—Cl1	114.7 (4)	C19—C18—H18C	109.5
N2	115.7 (4)	H18A—C18—H18C	109.5
N3—C10—N4	124.7 (4)	H18B—C18—H18C	109.5
N3—C10—N5	114.8 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
N1—H1A····N3 ⁱ	0.86	2.16	3.018 (6)	176
N5—H5A…N2 ⁱⁱ	0.86	2.45	3.300 (6)	171
C4—H4B…O1 ⁱⁱⁱ	0.93	2.36	3.264 (9)	165
C6—H6A···N4	0.93	2.59	2.999 (6)	107
C12—H12A…N4	0.93	2.30	2.912 (7)	123
C1—H1C···Cg1 ^{iv}	0.96	3.01	3.806 (2)	141
C17—H17C···Cg2 ^v	0.96	2.92	3.745 (2)	145

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) *x*, -*y*+1/2, *z*+1/2; (iii) -*x*-1, *y*+1/2, -*z*-1/2; (iv) -*x*+1, -*y*, -*z*; (v) -*x*+1, -*y*, -*z*+1.

